Quantum Control Architecture -- Bridging the Gap between Quantum Software and Hardware

  报告时间: 2019年10月14日(周一) 上午 10:00—12:00

  报告地点: 计算所 446室

  主 讲 人 :付祥 (国防科技大学 助理研究员)


  Quantum computers promise to solve problems intractable by classical computers. Different to the von-Neumman architecture used by classical computers, (most) quantum computers adopt the process-in-memory paradigm, where quantum bits (qubits) are the place both for processing and storage. Due to the heterogeneity between quantum storage & processing (in quantum states) and quantum control (with classical analog signals), a quantum computer requires a dedicated control system apart from the quantum processor allocating qubits.

  Addressing the flexibility and scalability issues of the quantum control system as observed in experiments, we proposed an executable quantum instruction set architecture (QISA), named eQASM, which can be supported by our proposed QuMA-series control microarchitecture. eQASM/QuMA can support the widely-used "classical control, quantum data" paradigm, and is highlighted by a quantum-classical hybrid programming model, configurable QISA at compile time, comprehensive program flow control, precise timing control, etc.

  Driven by the difficulties of using current quantum programming languages and compilers to generate eQASM code, we started developing a quantum programming language targeting near-term devices (named Qingo) in collaboration with multiple universities/institutes such as Peng Cheng Lab. Before ending this talk, I will give a short introduction to Qingo with its compiler, which will be open-source around Jan. 2020.


  Xiang Fu is an assistant professor in Quantum Computing Lab, Institute for Quantum Information and State Key Laboratory of High-Performance Computing (HPCL), National University of Defense Technology (NUDT), Changsha, Hunan, China. He got his bachelor's degree from the Department of Electronic Engineering at Tsinghua University in 2011, and master's degree from College of Computer, NUDT in 2013. He started doctoral research on quantum control (micro)architecture at QuTech, Delft University of Technology in 2014 and got his Ph.D. in 2018. He is honored by the best paper award of MICRO 2017 and Top Picks 2017. His current research interest include quantum computer architecture, and quantum programming language and compiling.

太阳城申博游戏登入 大连天健棋牌下载 申博现金网网址全国 太阳城APP ek1级会员
澳门星际注册送38元 澳门美高梅美女发牌 33655.com 888集团游戏官网 澳门沙龙官网
太阳城娱乐下载 金沙国际APP 海上皇宫娱乐在线 t6游戏代理 申博娱乐场官方网站
宝马时时彩平台 百盛游戏全新代理模式 申博网址是什么 体育在线投注app 太阳城娱乐手机登入网址